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The term spreading depolarization (SD) refers to waves of abrupt, sustained mass depolarization in gray
matter of the CNS. SD, which spreads from neuron to neuron in affected tissue, is characterized by a rapid
near-breakdown of the neuronal transmembrane ion gradients. SD can be induced by hypoxic conditions—
such as from ischemia—and facilitates neuronal death in energy-compromised tissue. SD has also been
implicated in migraine aura, where SD is assumed to ascend in well-nourished tissue and is typically benign.
In addition to these two ends of the ‘‘SD continuum,’’ an SD wave can propagate from an energy-depleted
tissue into surrounding, well-nourished tissue, as is often the case in stroke and brain trauma. This review
presents the neurobiology of SD—its triggers and propagation mechanisms—as well as clinical manifesta-
tions of SD, including overlaps and differences between migraine aura and stroke, and recent developments
in neuromonitoring aimed at better diagnosis and more targeted treatments.
Introduction
Spreading depolarization (SD) is the generic term for waves

of abrupt, sustained mass depolarization in gray matter of the

CNS (Dreier, 2011; Somjen, 2001) resulting from near-break-

down of the neuronal transmembrane ion gradients (Hansen

and Zeuthen, 1981; Kraig and Nicholson, 1978; Mutch and

Hansen, 1984; Windmüller et al., 2005). The wide array of elec-

trochemical changes involved in SD indicates that this is among

the most fundamental processes of brain pathology (Table 1).

The question of whether SD occurs in humans remained contro-

versial for decades, despite its detection in the brains of virtually

all species examined, including invertebrates such as locusts

and cockroaches. Its pioneer investigator, the Brazilian neurobi-

ologist Aristides Leão, had specifically linked SD to migraine

aura and cerebral ischemia (Leão, 1947; Leão and Morison,

1945). His hypothesis is an outstanding example for a counter-

intuitive hypothesis on brain pathology based on laboratory

experiments, that only six decades later and after enormous

resistance from the clinical community was eventually confirmed

in clinical studies.

Over the last decade, it became possible to electrocortico-

graphically (ECoG) record SDs in patients with acute cerebral

injuries such as traumatic brain injury (TBI) and stroke (cf. http://

www.cosbid.org) (Dohmen et al., 2008; Dreier et al., 2006, 2009;

Fabricius et al., 2006; Hartings et al., 2011a, 2011b; Strong

et al., 2002). Advancedneuromonitoring has increasingly become

routine practice in neurointensive care as it may offer unprece-

dented opportunities for diagnosis and treatment. In parallel to

itsadvantages, thismorewidespreadcollectionofdatapresented

new challenges, as clinicians aremore frequently confrontedwith

the entire SD spectrum, rather than the two extremes of SD in

either severely ischemic or normal tissue. This continuous depo-

larization spectrum is furthermore reflected by clinical overlaps

between migraine with aura and stroke. It is referred to as the

stroke-migraine depolarization continuum based on Leão’s orig-
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inal observations, his translational hypotheses (Leão, 1947;

Leão and Morison, 1945), and the accumulated evidence from

research over the past half century.

The first part of this review presents the neurobiology of SD,

including overlaps between migraine aura and stroke models.

The second part is devoted to patients’ percepts when SDs

sweep across their brains. Reconciling the concepts of SD in

migraine aura versus stroke presents an ongoing challenge:

Can these two pathologies share a similar fundamental phenom-

enon given that the patients’ percepts are so different?

A possible solution to this enigma may emerge from observa-

tions of two fundamentally different types of depression in spon-

taneous activity that can be associated with SD.We also discuss

and clarify the neurophysiological differences between ‘‘depres-

sion’’ and ‘‘depolarization.’’ Although these terms are often used

interchangeably, awareness of the distinction between them is

crucial for understanding their clinical implications.

Part I: Neurobiology of SD
Electrochemical cells, such as found in electric batteries, convert

stored chemical energy into electric energy. Neurons, like batte-

ries, store chemical energy in the form of ion gradients across

the cell membrane, themost important ions being potassium, so-

dium, calcium, and chloride. Energy stored up in these ion

gradients can be used by neurons to generate electric signals.

During electric signaling, the electric gradient across the cellular

membrane changes, but not the ion gradients between the bulk

solutions on both sides of the membrane; this is because only a

very small absolute numberof ionscrosses themembrane to tran-

siently discharge and recharge it (Alle et al., 2009). Hence, a phys-

iological signal consumes only a negligible fraction of the total

electrochemical energystoredup inaneuron (Dreier et al., 2013a).

But what happens when ATP is persistently depleted from the

tissue? At rest, sodium and calcium continuously leak into cells

and potassium leaks out of them. These movements are driven
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Table 1. Ion Changes during IEEs and SD Based on Dreier et al.

(2013a)

Physiological State IEE SD

[K+]i (mM) 134 126 106

[K+]o (mM) 2.3–3.1 10–12 35–60

[Na+]i (mM) 10 16 35

[Na+]o (mM) 146–154 135–143 57–59

[Ca2+]i (mM) 0.06 0.13 25

[Ca2+]o (mM) 1.2–1.3 0.8–1.0 0.08

[Cl�]o (mM) 145–148 151–154 95

Extracellular space (%) 18–22 14 5–9

Negative intracortical DC

shift (mV)

0 2–4 5–30

Sustained negative

membrane potential (mV)

60–70 40–45 1–17

Box 1.

Within minutes of cerebral ischemia, decline of the apparent

diffusion coefficient (ADC) of water is observed in MR images.

ADC decline reflects beading of neuronal processes. Beaded

morphology allows a larger volume to be encompassed within

an equivalent surface area, causing decreased mobility of

intracellular water (Budde and Frank, 2010). SD is the mecha-

nism underlying abrupt dendritic beading in the cortex and

basal ganglia. Accordingly, time-locked to SDs, dendritic

beading shows waxing and waning in the penumbra before

it eventually persists (Risher et al., 2009, 2010). Moreover,

SD initiates a rapid ADC drop both in healthy and ischemic

gray matter (de Crespigny et al., 1999). Beading is also of ther-

apeutic interest. Pharmacological inhibition of beading pro-

tected dendrites from ischemic injury (Risher et al., 2011).
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by the release of Gibbs free energy. When ATP is depleted,

ATP-dependent membrane pumps such as the Na,K-ATPase

fail to restore the leaking ions. As a result, all mammalian

cells are inevitably impacted adversely by a toxic run down in

the ion gradients before they die. This is reflected in a sustained

depolarization of the cellular membranes.

In non-neuronal tissues this process is fortunately slow, often

allowing a treating physician sufficient time to intervene (Somjen,

2004). The neocortex by contrast, under pathological conditions

shows sustained depolarizations which happen abruptly. The

quick onset is followed by a plateau phase of a new polarization

level, which in turn may or may not be followed by recovery. Two

fundamental spectra of such abrupt sustained depolarizations

have been described: (1) the spectrum of ictal epileptic events

(IEE), which despite their dramatic associated changes in neural

firing are characterized by relatively mild sustained depolariza-

tion (Table 1); and (2) the spectrum of SDs, characterized by

sustained near-complete depolarization.

At a given tissue spot, the near-complete breakdown in ion

gradients during SD happens rapidly, within �6–8 s, and lasts

locally for at least 30 s. Ion changes of this magnitude never

occur under other conditions in living neurons. As an example

for the ion concentration changes during SD, in dendrites, the

intracellular calciummay surge up to 25 mM, a level which is toxic

when the recovery from SD is hindered as in metabolically

compromised tissue (Aiba and Shuttleworth, 2012; Dietz et al.,

2008). The ion changes lead to intracellular hyperosmolality

(Kraig and Nicholson, 1978). The resulting water influx causes

cytotoxic edema and shrinkage of the extracellular volume frac-

tion from 20% to �5% (Mazel et al., 2002; Vorı́sek and Syková,

1997; Windmüller et al., 2005). This is observed as swelling of

neuronal somata and focal dendritic enlargement and constric-

tion (‘‘beading’’) (Murphy et al., 2008; Risher et al., 2009, 2010;

Takano et al., 2007) (Box 1). Moreover, neuronal mitochondria

depolarize (Bahar et al., 2000), and neurotransmitters such as

acetylcholine, g-aminobutyric acid (GABA), and glutamate are

released in large amounts (Fabricius et al., 1993; Zhou et al.,

2013). Endogenous GABA may have a janus-faced role as

GABAA receptor activation limits the propagation rate (Aiba

et al., 2012), but may, on the other hand, facilitate cell swelling
through chloride entry (Allen et al., 2004). This contrasts with

glutamate, whose primary effect is facilitation.

SD has been found in virtually all gray matter. However, in the

olfactory bulb, brain stem, and spinal cord, it can only be pro-

voked in presence of conditioning media (Somjen, 2001). Also,

some cortical areas such as retrosplenial cortex are more

resistant to SD (Leão, 1944). This region-specific protection is

age-dependent. Thus, the immature brainstem can transiently

generate SD in absence of conditioning media (Richter et al.,

2003). In white matter, SD does not occur.

SD is observed as a large negative potential change in the

direct current (DC) frequency range (less than �0.05 Hz) of the

ECoG (cf. DC-ECoG traces in Figure 1). This DC shift emanates

from differences in depolarization between soma and dendrites

(Canals et al., 2005). Because the DC shift is generated by

neurons, it is observed not only in vivo but also in brain slices

even though these lack an intact blood-brain barrier (BBB); this

contrasts with BBB-generated DC shifts, which are potential

confounders during in vivo recordings (Kang et al., 2013).

Another hallmark of SD is its slow spread, at �2–8 mm/min.

The slowness suggests a reaction/diffusion mechanism in which

neurons release neuroactive substances such as glutamate and/

or potassium. These diffuse to adjacent neurons, where they

trigger a self-propagating regenerative process. The exact prop-

agation mechanism is unknown. Rise in extracellular potassium

precedes all other ion changes in the bulk solutions during SD,

but microelectrode recordings suggest that it does not precede

the neuronal depolarization (Canals et al., 2005; Hansen and

Zeuthen, 1981; Herreras and Somjen, 1993a; Lehmenkühler,

1990; Somjen, 2001). A propagation model based on regenera-

tive glutamate release via NMDA receptor activation (Zhou

et al., 2013) faces the problem that indirect calcium release

from mitochondria seems insufficient for driving this process in

naive tissue as, in contrast to slices exposed to brief potassium

challenges, removal of extracellular calcium or inhibition of

voltage-gated calcium channels blocked SD in naive tissue

(Dietz et al., 2008; Jing et al., 1993; Peters et al., 2003). A trans-

cellular pathway for the reaction/diffusion via neuronal gap junc-

tions (Herreras et al., 1994) is also questionable as gap junctions

in adult animals are common between interneurons where they
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 903
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Figure 1. Pathophysiological Correlates of
Common Neurological Syndromes
(A) The pathophysiological correlate of migraine
aura is characterized by a large negative DC
change indicating SD (DC-ECoG) that propagates
at a rate of �3 mm/min. SD initiates spreading
depression of activity in the high-frequency band
of the ECoG (HF-ECoG). Moreover, it triggers
spreading hyperemia (rCBF) followed by a rela-
tively subtle oligemia. Spreading depression of
activity translates into the symptoms of migraine
aura.
(B) Migrainous stroke starts with migraine aura in a
patient having previously harmless migraine with
aura. The trigger could be non-vascular. The pre-
sumed pathophysiological correlate is charac-
terized by a negative DC change that initiates
spreading depression of activity (high-frequency
(HF)-ECoG) and induces spreading ischemia
(rCBF), rather than spreading hyperemia, due to
disturbed vascular reactivity (Dreier, 2011). The
flow decline leads to a repercussion on the
negative DC shift which becomes longer-lasting
compared to the one in (A). If sufficiently pro-
longed, SD may lead to cell death under this
condition.
(C) Short-lasting nonspreading ischemia due to
transient middle cerebral artery occlusion (MCAO).
Usually, focal ischemia is nonspreading and
initiates nonspreading depression of activity (HF-
ECoG) in the malperfused zone within seconds.
Short-lasting, transient nonspreadingdepressionof
activity translates into a sudden and simultaneous,
fully reversible neurological deficit in different mo-
dalities such as language, motor or visual function
typical of a transitory ischemic attack. Also note the
gradual decrease of extracellular pH (pHo) and the
gradual increase of extracellular potassium ([K+]o)
that start shortly after onset of ischemia.
(D) A cardiac arrest entails nonspreading global
ischemia which leads rapidly to nonspreading
depression of activity (HF-ECoG). Isoelectric
nonspreading depression is followed by SD after
�1–4 min (Dreier, 2011). In this case, the SD is not
accompanied by spreading depression of activity
because the activity has already ceased when the
SD starts. If the global ischemia persists, the SD
will be terminal and cells will die.
Of note, all four conditions represent prototypes.
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can form dense and far-ranging networks (Fukuda et al., 2006),

but are restricted to early development between pyramidal cells

(Sutor and Luhmann, 1995). Ephaptic mechanisms could
904 Neuron 86, May 20, 2015 ª2015 Elsevier Inc.
contribute to the propagation, as calcium

drops extracellularly from �1.3 mM to

�0.08 mM (Haas and Jefferys, 1984;

Hansen and Zeuthen, 1981; Windmüller

et al., 2005), but the calcium drop only

happens �4 s after the neuronal depo-

larization (Hansen and Zeuthen, 1981;

Herreras and Somjen, 1993a; Kraig and

Nicholson, 1978; Lehmenkühler, 1990).

Thermodynamic Changes

During SD, ion gradients change from

the physiological double Gibbs-Donnan

steady state toward a new steady state

close to a simple Gibbs-Donnan equilib-
rium (Kraig and Nicholson, 1978; Windmüller et al., 2005). This

implies that sodium and calcium enter neurons in large amounts

whereas potassium exits them. The potassium outflux, however,
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is smaller than the sodium influx. Chloride follows sodium

which produces an apparent anion gap, but electro-neutrality

seems to be maintained by efflux of small organic anions. Based

on simple models of the neuropil, changes in cation concentra-

tions and electric field alone resulted in a Gibbs free energy

release of 19–22 J/l per tissue volume (Dreier et al., 2013a).

Consequent transition to cell death led to an additional small

free energy release of �2.5 J/l. The Gibbs free energy released

is converted to heat. Based on the estimates above, tissue

temperature should rise by �5 mK in the front of SD. This is

only slightly smaller than the measured temperature rise

between 5 and 30 mK in isolated retinae of bullfrog and toad

(Tasaki and Byrne, 1991). Thermodynamically therefore, SD is

a state of living neurons, in which 90% of the Gibbs free energy

contained in the ion gradients is lost (‘‘free energy starving’’).

Neurons fall into this state in various conditions such asmigraine

aura, stroke, TBI, hypoxia, and hypoglycemia. From there, they

either recover or die. Notably, during IEEs, the loss of Gibbs

free energy is much smaller than during SDs and only amounts

to �2.8 J/l.

The Role of Na,K-ATPase

The Na,K-ATPase provides outward transport of sodium in

exchange to potassium, thereby consuming �50% of the brain

energy. It critically supports several vital processes, including

reuptake of neurotransmitters such as glutamate, uptake of

other amino-acids and carbohydrates, and Na,Ca-antiport.

Na,K-ATPase counteracts SD in two ways: it opposes triggers

of SD by support of glutamate removal from the extracellular

space and potassium buffering, and it is critical for the recovery

from SD. Activation of the NA,K-ATPase consumes energy.

Therefore, tissue ATP declines by �50% not only in energy-

deprived but also in well-supplied tissue during SD (Mies and

Paschen, 1984).

In the rodent brain, there are three different Na,K-ATPase

isoforms: a1, expressed by all cells; a2, mainly expressed by

astrocytes in the adult brain; and a3, exclusively expressed by

neurons. The a2 and a3 isoforms can be distinguished from the

a1 isoform by their higher affinity to ouabain. Ouabain only

triggers SD when all three isoforms are inhibited. Complete inhi-

bition of a2 and a3 with partial inhibition of a1 causes a cluster

of recurrent SDs, whereas complete inhibition of all isoforms

causes terminal SD (Balestrino et al., 1999). Selective reduction

of activity of specific a isoforms may lower the threshold of SD.

This was investigated using electric stimulation to trigger SD in

genetically engineered mice carrying the human W887R muta-

tion in the ATP1A2 orthologous gene, which results in retention

of the mutant a2 isoform in the endoplasmic reticulum, with sub-

sequent proteasomal degradation and loss of function (Leo et al.,

2011). In patients, mutations in the ATP1A2 gene cause familial

hemiplegic migraine type 2 (FHM2), which is clinically character-

ized by complicated forms of migraine aura (De Fusco et al.,

2003). Functional testing indicated that the putative pathoge-

netic effect of the mutations results from loss of function in a

single allele of ATP1A2. Consistent with the SD hypothesis of

migraine aura, heterozygous ATP1A2+/R887 mutant mice showed

both increased propagation velocity and reduced electric

threshold for SD in vivo (Leo et al., 2011). This results from

enhanced glutamatergic transmission. In adult somatosensory
cortex, the a2 isoform almost completely co-localizes with the

astrocytic glutamate transporters GLAST and GLT1 (EAAT1,

EAAT2). Analysis at the ultrastructural level revealed that this

complex occurs preferentially in astrocytic processes around

asymmetric glutamatergic synaptic junctions, but not around

GABAergic terminals (Cholet et al., 2002). Insufficient buildup

of sodium and potassium gradients in this subcellular microdo-

main presumably slows down glutamate reuptake, thereby

increasing glutamate in the synaptic cleft. Interestingly, a muta-

tion in SLC1A3, encoding the astrocytic glutamate transporter

GLAST (EAAT1), was reported to cause clinical features resem-

bling FHM (Jen et al., 2005).

Triggers of SD

Based on computer simulations, Kager et al. (2002) suggested

that the actual SD process starts when neuronal cation outflux

(via ATP-dependent membrane pumps and potassium channels)

fails to compensate for influx of sodium and calcium; as a result,

the net flux across the membrane turns inward and persists in

that direction. Channels mediating the net inward current need

to be voltage-gated and/or dependent on extracellular potas-

sium to be able to initiate the positive feedback cycle that con-

fers to SD’s all-or-none characteristics. Chloride conductances

may counteract this (Aiba et al., 2012).

SD triggers can be roughly categorized into two major groups:

(1) those depolarizing neurons by sodiumand/or calciumchannel

activation, and (2) those depolarizing neurons indirectly by Na,K-

ATPase activity reduction (Somjen, 2001). Examples of (1) are

IEEs, glutamate, potassium, and veratridine. Examples of (2)

are conditions of ATP-depletion such as ischemia, hypoxia, and

hypoglycemia, as well as direct inhibition or functional distur-

bance of Na,K-ATPases by drugs such as ouabain or palytoxin.

SD can also be triggered by minimal trauma. Other examples of

particular interest for (2) (Na,K-ATPase activity reduction) are

brain topical superfusion of the vasoconstrictor endothelin-1

(ET-1) (Dreier et al., 2002, 2007), or injection of air microemboli,

polystyrenemicrospheres, or cholesterol crystals into the carotid

circulation (Nozari et al., 2010), which trigger short-lasting SDs

through mild ischemia. In the case of air microemboli, the dura-

tion of ischemia was insufficient to cause infarcts whereas the

other procedures typically resulted in tiny cortical microinfarcts

of 100–200 mm in diameter, which is below resolution of a 9.4 T

animal magnetic resonance imager (MRI). In view of their origin,

and although short-lasting, these SDs are so-called anoxic SDs.

Anoxic SD

Extracellular parameters can be used to distinguish between

short-lasting anoxic SD in mildly ischemic tissue and SD of

almost similar duration in well supplied tissue. Two particularly

useful indicators are the mild acidosis (Hansen and Lauritzen,

1984; Oliveira-Ferreira et al., 2010; Taylor et al., 1996) and the

gradual rise in potassium (Dreier et al., 2002; Erdemli et al.,

1998; Müller and Somjen, 2000a; Nedergaard and Hansen,

1993) that precede only anoxic SD ([K+]o and pHo traces in Fig-

ures 1C and 1D compared to those of Figure 1A). Also, sponta-

neous release of neurotransmitters, such as GABA and gluta-

mate, is significantly increased specifically before anoxic SD

(Allen et al., 2004; Fleidervish et al., 2001). Moreover, under ox-

ygen-glucose deprivation, arrival of SDwas associated inmouse

brain slices with a large calcium rise up to �25 mM that starts in
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 905
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the soma and quickly travels toward the apical dendrites. By

contrast, in well-supplied tissue, SD produces a short calcium

rise of �8 mM in soma and 25 mM in apical dendrites followed

by an advancing front of high calcium that progresses from distal

dendrites toward the soma (Dietz et al., 2008). Furthermore,

removal of extracellular calcium prevents SD in well supplied tis-

sue but not in hypoxic one (Dietz et al., 2008; Peters et al., 2003).

Sodium conductances seem more important than calcium con-

ductances for anoxic SD, as substitution of sodium by mem-

brane-impermeant cations is sufficient to block anoxic SD

(Müller and Somjen, 2000b). However, similar to SD in well sup-

plied tissue, the ion conductances involved in maintaining the

depolarization phase are not sodium-selective, as the depolari-

zation remains below zero and the whole-cell current reverses

at a slightly negative level (Somjen, 2001). Failure of the en-

ergy-dependent recovery under continued oxygen depletion is

the most obvious discriminator between anoxic SD and SD in

well-supplied tissue. This feature renders the negative DC shift

duration a useful measure for the local tissue energy status, indi-

cating the risk for neuronal damage in both animals and patients

(Dreier et al., 2009; Hartings et al., 2011b; Leão, 1947; Somjen,

2001). It moreover implicates prolonged extracellular accumula-

tion of neurotransmitters, including glutamate (Fabricius et al.,

1993) during anoxic SD, although the initial peak concentration

of glutamate seems not significantly different between anoxic

SD and SD in well-supplied tissue.

Despite these important mechanistic differences, Somjen

(2001) listed a number of arguments suggesting that anoxic SD

is not a separate entity but belongs to the SD continuum. Consis-

tent with this view, when SD spreads from severely energy

depleted to normal tissue in focal ischemia, it changes gradually,

rather than abruptly, from a terminal to a short-lasting pattern

(Dreier et al., 2013a). Along this propagation path, the following

features of SD persist: the magnitude of the neuronal depolariza-

tion and the principal ion changes involved; the waveform of

the negative DC shift; the changes in holding current and input

resistance of patch-clamped neurons; the intrinsic optical signal;

the spread in the tissue; the beading of dendrites; the cytotoxic

edema; and the abrupt release of neurotransmitters (Aitken et al.,

1998; Bahar et al., 2000; Dietz et al., 2008; Farkas et al., 2010;

Jarvis et al., 2001; Jing et al., 1994; Murphy et al., 2008; Risher

et al., 2009, 2010; Somjen, 2001). In addition, in well-supplied

tissue, SD can gradually transform into anoxic SD by inverse

neurovascular coupling (cf. below) (Dreier, 2011; Dreier et al.,

1998). Moreover, anoxic SD is not necessarily terminal but fully

reversible without any signs of cellular damage when oxidative

substrate supply is reestablished before the so-called commit-

ment point (Murphy et al., 2008; Nozari et al., 2010), defined as

the time when neurons start dying during SD (Somjen, 2004).

Furthermore, subthalamic gray matter of the adult brain neither

generates SD in response to potassium (cf. above) nor does it

generate anoxic SD, but it depolarizes only slowly under oxy-

gen-glucose deprivation. This difference between subthalamic

gray matter and upper brain centers could underlie the lower

vulnerability of subthalamic gray matter to ischemia and may

be the basis for the so called ‘‘vegetative state,’’ a feared compli-

cation following global ischemia, characterized by selective sur-

vival of neurons in gray matter below the thalamic/hypothalamic
906 Neuron 86, May 20, 2015 ª2015 Elsevier Inc.
boundary zone (Brisson et al., 2014). Analogously, the lower

vulnerability of upper brain centers during the neonatal period

compared to the postnatal period might be at least partially

explained by the observation that upper brain centers sup-

port neither potassium-induced SD nor anoxic SD during

the neonatal period in contrast to the postnatal one; the evolu-

tionary benefit is likely that birth is the point in the life cycle

with the highest statistical risk for hypoxia (Somjen, 2004). Lastly,

apart from anoxia/ischemia, several conditions that do not

compromise the partial pressure of oxygen can also cause

long-lasting up to terminal SD; these include aglycemia, or pres-

ence of chemicals in the tissue like high potassium, veratridine,

ouabain, palytoxin, etc. (Balestrino et al., 1999; Brisson et al.,

2014; Dreier et al., 2013a). Among these conditions there are

important differences in the mechanisms of initiation and recov-

ery (Pietrobon and Moskowitz, 2014), but the phenomenology of

SD remains remarkably stable. This suggests that mechanisti-

cally, there are not only differences but also overlaps. Anoxic

SD and SD in naive tissue may thus be seen as two extremes

of a continuous spectrum.

Neuronal Ion Conductances and SD Pharmacology

The abruptness of SD suggests explosive opening of cation

conductances at its onset. Animal models of FHM1 and FHM3

suggest the involvement of voltage-gated cation channels.

FHM1 results from mutations in the CACNA1A gene, encoding

the pore-forming a1 subunit of neuronal voltage-gated Cav2.1

P/Q-type calcium channels (Joutel et al., 1993), and FHM3

from mutations in the SCN1A gene, encoding the a1 subunit of

Nav1.1 voltage-gated sodium channels (Dichgans et al., 2005).

Functional studies of both mutated channels indicated gain

in function (Dichgans et al., 2005; van den Maagdenberg et al.,

2004). Notably, the knockin mouse model for FHM1, which

carries the human pure FHM1 R192Q mutation, displays

increased propagation velocity and susceptibility to SD (van

den Maagdenberg et al., 2004), resulting from enhanced gluta-

matergic transmission as functionally augmented P/Q-type

calcium channels mediate presynaptic glutamate release by

vesicular exocytosis (Tottene et al., 2009).

The channels that participate in initiation and spread of SD

vary depending on tissue conditions. Specifically, NMDA recep-

tor antagonists effectively abolish SDs in well supplied tissue

(Marrannes et al., 1988), but are ineffective in severely ischemic

or hypoxic tissue (Hernándéz-Cáceres et al., 1987; Müller and

Somjen, 1998). Consistently, in the majority of patients with sub-

arachnoid hemorrhage (SAH) and TBI, the NMDA receptor

antagonist ketamine significantly inhibited SDs (Hertle et al.,

2012; Sakowitz et al., 2009), but in a fraction of the patient pop-

ulation SDs were resistant to the same drug (Dreier et al., 2009).

The gradual increase in baseline potassium before onset of

anoxic SD (Figures 1C and 1D) is presumably among the factors

rendering SD resistant to NMDA receptor antagonists under

ischemia, because artificial rise in baseline potassium alone,

i.e., in absence of ischemia, had the same effect in vivo and in

brain slices (Petzold et al., 2005b). Another important influential

factor might be the tissue acidosis before anoxic SD, as acidosis

strongly inhibits NMDA receptor activation (Tong and Chesler,

2000). In focal ischemia, the penumbra is the transition zone

between severely ischemic and adequately supplied tissue



Box 2.

Pharmacology of SD is determined by processes that precede

and trigger it. This partially explains the failure of clinical trials

of NMDA receptor antagonists in stroke. In severely ischemic

tissue, SDs are resistant to NMDA receptor antagonists,

whereas in the penumbra they become increasingly pharma-

cosensitive as they move away from the ischemic center.

Blocking SDs in the peripheral penumbra might have been

beneficial in clinical trials, but this was possibly outweighed

by their blockade in well perfused, surrounding tissue where

they may precondition the tissue and promote regeneration

and plasticity (Dreier, 2011). The oligemia following SD in

surrounding tissue may reduce the steal-effect on rCBF in

the ischemic zone (Figure 3C). Furthermore, SD activates mi-

croglia, thereby inducing expression of potentially beneficial

cytokines (Jander et al., 2001). A caveat though is that at least

part of the preconditioning effects attributed to SD could be a

direct consequence of the lesion induced by local potassium

application (Muramatsu et al., 2004).
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(Hossmann, 1994). NMDA receptor antagonists consistently

blocked SD in the peripheral penumbra. Only this part of the

tissue showed improved survival (Eikermann-Haerter et al.,

2012; Hartings et al., 2003; Iijima et al., 1992) (cf. Box 2 regarding

NMDA receptor antagonist trials in stroke).

In hypoxic brain slices, only blockade of all major cation

channels prevented anoxic SD. The drug cocktail that effectively

prevented anoxic SD targeted voltage-gated sodium and cal-

cium channels as well as NMDA and AMPA/kainate receptor-

controlled channels (Müller and Somjen, 1998). In most studies,

single channel blockers alone were insufficient for preventing

anoxic SD; inhibitors of voltage-gated sodium channels, such

as tetrodotoxin, lidocaine or dibucaine, were the single-channel

blockers that produced the most significant delay from oxygen

depletion to anoxic SD (Pietrobon and Moskowitz, 2014), even

at concentrations that only partially inhibited evoked field poten-

tials or axonal conduction (Risher et al., 2011). A smaller delay of

anoxic SD was produced by inhibitors of voltage-gated calcium

channels (Jing et al., 1993; Yamamoto et al., 1997).

The pharmacological profile of SDs under various tissue

conditions, including exposure to hypoxia, potassium, ouabain,

electric current, or trauma, was previously reviewed (Pietrobon

and Moskowitz, 2014; Somjen, 2001). This incompletely under-

stood profile is beyond the scope of this paper. It is important

to note though, that the majority of tissue conditions that trigger

SD in vivo are focal and are characterized by gradients of

intensity or concentration of the trigger across the tissue. For

example, in potassium-induced SD, there is a gradient of base-

line potassium, on which SDs are superimposed (Petzold et al.,

2005b); in focal ischemia, lack in oxygen and glucose show gra-

dients as well. Speculatively, trigger-dependent mechanisms

follow these spatial gradients in a dose-dependent manner,

which would imply a seamless transition at the border zone be-

tween two neighboring tissue conditions, indicating not only

differences but also shared mechanisms between the different

wave sections (Figure 2). Consistently, trigger-dependent modi-
fications of several aspects of SD phenomenology change

gradually rather than abruptly when the wave propagates from

one tissue condition to the next; this includes: DC shape and

duration, depression pattern (cf. below), intrinsic optic signal,

neurovascular response (cf. below) and propagation speed.

Histopathological evidence further suggests that as one moves

away from the center exposed to the trigger, the wave becomes

less and less harmful. This is accompanied by faster recovery

within the depolarization continuum, shifting the cell death

mechanism toward apoptosis and, hence, to slower death within

the necrotic-apoptotic continuum (Charriaut-Marlangue et al.,

1996). This seamless transition also seems to apply to drug

sensitivities. For instance, in experiments where the potassium

threshold of SDwas determined using stepwise rises of extracel-

lular potassium, the sensitivity to NMDA receptor antagonists

declined as a function of the baseline potassium concentration

(Petzold et al., 2005b). Also, the upward shift in the electric

stimulation threshold of SD by subsaturating doses of NMDA

receptor antagonists fits into this picture (Marrannes et al., 1988).

The Role of Astrocytes

SD is primarily a disturbance of neurons. Astrocytes remain

functional and support neuronal recovery. That neurons lead

and astrocytes follow is exemplified by changes in intracellular

calcium which rises first in neurons, then in astrocytes (Chuquet

et al., 2007). Moreover, SD and the associated neuronal calcium

wave remain unaffected when the astrocytic calcium wave is

blocked by the depletion of internal calcium stores (Peters

et al., 2003).

The protective role of astrocytes against SD is supported, for

example, by an animal model of familial advanced sleep phase

syndrome (FASPS) and migraine, a genetic disease of migraine

with uncomplicated aura (Brennan et al., 2013). Specifically, a

lower potassium threshold for SD was observed in mice engi-

neered to carry the gene encoding casein kinase Id (CKId)-

T44A allele, containing a missense mutation that co-segregated

with the clinical syndrome in patients. Hypothetically, the

mutation causes hypophosphorylation of connexin43 (Cx43),

thereby reducing gap junctional communication. In another

genetically modified mouse, astrocyte-directed inactivation of

Cx43 reduced astrocytic gap junctional communication and

was similarly associated with higher propensity to SD (Theis

et al., 2003). Spatial potassium buffering requires functional

gap junctions, which might explain their protective effect.

Moreover, astrocytic glycogen stores might play a protective

role against SD. Thus, functional glycogenolysis in astrocytes

decreased the propagation velocity of SD induced by either local

microinjection of potassium chloride or oxygen-glucose depriva-

tion and increased the latency from energy depletion to SD under

oxygen-glucose deprivation (Allen et al., 2005; Seidel and Shut-

tleworth, 2011).

Under ischemia, the compensatory action of astrocytes is

hindered because astrocytic Na,K-ATPases lack ATP. Then,

intra-astrocytic sodium rises as observed in primary astrocyte

culture under simulated ischemic conditions (Rose et al.,

1998), and potassium is spilled out instead of taken up (Largo

et al., 1996a). Correspondingly, in normoxic-normoglycemic tis-

sue, astrocytes do not show large volume increases during SD,

whereas they markedly swell during ischemia (Risher et al.,
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 907



Figure 2. Gradually Changing Contribution of Cellular Mechanisms Involved in SD within the Transition Zone between Ischemic Center and
Surrounding Well-Perfused Tissue
(A) Schematic of neuronal and astrocytic units. Brain cells are exposed to gradual decline of perfusion from right to left. In a reaction/diffusion type of process, SD
runs rightward against the gradients of perfusion and oxidative substrates.
(B) Molecular and neurophysiological mechanisms involved in propagation and local persistence of SD differ between the ischemic core and the surrounding
tissue. In the transition zone, these might blend with each other. The illustration depicts a tripartite glutamatergic synapse. Preeminently changing variables are
highlighted using semitransparent boxes with the direction of change denoted by arrows in comparison to surrounding, well-nourished tissue. Emphasis has
been placed on extracellular potassium accumulation and glutamatergic mechanisms.
K+, potassium; Na+, sodium; Ca2+, calcium; Mg2+, magnesium; Na,K-ATPase, sodium-potassium adenosine triphosphatase; PMCA, plasmamembrane calcium
ATPase; NCX, Na,Ca-antiport; NMDAR, N-methyl-D-aspartate receptor; AMPAR, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; P/Q Ca2+

channel, P/Q type calcium channel; Kir, inwardly rectifying potassium channel.
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2009). Loss in astrocytic function may importantly limit neuronal

survival under ischemia. In normoxic-normoglycemic tissue,

even astrocytic failure alone was sufficient to induce SDs and,

with delay, neuronal death (Largo et al., 1996b).

The so-called glucose paradox further underscores the impor-

tance of astrocytes (Schurr et al., 1999; Somjen, 2004): under
908 Neuron 86, May 20, 2015 ª2015 Elsevier Inc.
experimental ischemia, hyperglycemia and acidosis delay the

onset of SD, curtail it and promote recovery of synaptic transmis-

sion, whereas in the penumbra, low glucose levels further

prolong SDs and increase their frequency (de Crespigny et al.,

1999; Strong et al., 2000). Eventual cell death, however, was

worse in hyperglycemic animals (Hansen, 1978; Kristián and
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Siesjö, 1998). This may stem from hyperglycemic augmentation

of delayed death, presumably resulting from increased lactic

acidosis which primarily injures astrocytes and causes their

dissolution as they become significantly more acidotic than

extracellular space or neurons under such conditions (Kraig

and Chesler, 1990). A caveat though is that the dependence of

ischemic cell death on serum glucose presumably describes a

U-shaped curve. Clinical evidence that hypoglycemia can be

fatal was found for example in an SAH case, in which iatrogenic

insulin-triggered hypoglycemia resulted in a cluster of SDs with

fatal outcome (Dreier et al., 2009). Cerebral microdialysis in

patients with SAH correspondingly suggested that low cerebral

glucose is associated with unfavorable outcome (Schlenk

et al., 2008). SDs might play a causal role in this as they

decreased dialysate glucose and increased dialysate lactate in

experimental and clinical studies (Feuerstein et al., 2010).

Hemodynamic Responses to SD

In otherwise healthy cortex, the intense neuronal and astrocytic

depolarization during SD acts as a potent stimulus to increase

regional cerebral blood flow (rCBF) (= spreading hyperemia).

The increased rCBF aims to meet the increased energy demand

and to clear the extracellular space frommetabolites (Figure 1A).

A shallow initial hypoperfusion sometimes precedes the hyper-

emia, and a very prolonged, moderate hypoperfusion (= olige-

mia) follows it. This sequence of rCBF changes applies to naive

cortex of almost all properly investigated mammals (Santos

et al., 2014). With sufficient temporal resolution, traces of the

blood-oxygen-level-dependent signal from a functional MRI

study in migraineurs with aura suggest that the rCBF response

to SD in otherwise healthy human cortex follows the same

pattern (Hadjikhani et al., 2001). During oligemia, significant

increase in the cerebral metabolic rate of oxygen (CMRO2) was

found (Piilgaard and Lauritzen, 2009). But, despite this and

mild rCBF decrease, SD is not followed by histological damage

in otherwise healthy cortex (Nedergaard and Hansen, 1988).

In contrast to SD’s hemodynamic responses in healthy tissue,

under pathological conditions SD can cause severe vasocon-

striction instead of vasodilatation by inverse neurovascular

coupling (Figure 1B) (Dreier, 2011; Dreier et al., 1998; Shin

et al., 2006; Strong et al., 2007). This causes severe hypo-

instead of hyperperfusion, which runs together with the depo-

larization wave in the tissue (= spreading ischemia). In contrast

to the physiological oligemia (cf. above), spreading ischemia

starts during the massive disturbance of ion homeostasis

and delays its recovery. Hence, from a mechanistic perspective,

spreading ischemia gradually shifts SD toward anoxic SD along

the SD continuum. A key process underlying spreading ischemia

is a vicious cycle between vasoconstrictors released by neu-

rons/astrocytes and vasoconstriction-induced perpetuation of

neuronal/astrocytic depolarization (Dreier, 2011). Interestingly,

vasodilators such as the L-type calcium antagonist nimodipine

or the NO-donor S-nitroso-N-acetylpenicillamine caused phar-

macologically induced spreading ischemia to revert to almost

normal spreading hyperemia (Dreier et al., 1998, 2001a).

When cortex tissue was selectively exposed to erythrocyte

products in rats, spreading ischemiasby themselves, i.e.,without

preceding ischemia, were sufficient to causewidespread cortical

necrosis (Dreier et al., 2000). When spreading ischemias
occurred as a consequence of middle cerebral artery occlusion

(MCAO), they expanded the ischemic core (Shin et al., 2006;

Strong et al., 2007). Spreading ischemia was also observed in

rats during incomplete global forebrain ischemia (Bere et al.,

2014). In pharmacological experiments, it resulted from NO syn-

thase inhibition in combination with elevated baseline potassium

(Dreier et al., 1998). A similar constellation could also be respon-

sible for spreading ischemia after arterial occlusion as ischemia

increases baseline potassium before the onset of SD (cf. above)

and molecular oxygen is required for NO synthesis. In clinical

studies, spreading ischemia was recorded in patients with SAH

(Dreier et al., 2009), malignant hemispheric stroke (Woitzik

et al., 2013), and TBI (Hinzman et al., 2014) with durations of

more than 2 hr after SAH.

It might be added that the rCBF response to SD in naive cortex

is different in mice, with relevance for the genetic models in this

species. The mouse response starts with pronounced initial

hypoperfusion, followed by a short peak that barely reaches

baseline and renewed, very prolonged rCBF reduction by

�60% (Ayata et al., 2004). This is associated with a drop in

CMRO2. Concurrent severe hemoglobin desaturation suggests

that oxygenmetabolismbecomesat least partially supply limited,

and decrease in blood volume implies vasoconstriction as the

mechanism (Yuzawa et al., 2012). Duration of the initial

hypoperfusion correlates with duration of the negative DC shift,

which could be interpreted as a slight push toward anoxic SD.

Hence the hypoperfusion formally fulfills criteria for spreading

ischemia (Dreier, 2011). The phenomenology of the whole

response is nevertheless fundamentally different from spreading

ischemia in rats, cats, or humans (Dreier et al., 1998, 2009; Strong

et al., 2007). Interestingly, a rCBF response reminiscent of that in

mice canbe reproduced in rats throughanesthesiawith the vaso-

dilator isoflurane (Feuerstein et al., 2014), which increases base-

line rCBF by�50% from the physiological level. The trough of the

hypoemic response under isoflurane was not lower though than

the oligemia under other anesthetic conditions; instead, it simply

started from a higher level of flow. This may indicate that the

physiological mouse response to SD is shifted toward higher

vascular tone. This would explain tissue hypoxia in distant

territories of mouse cortical capillaries during the trough (Takano

et al., 2007). It should be noted though that the secondary,

shallow negative DC shift during this phase is rather not a nega-

tive ultraslow potential (cf. below), as the concomitant extracel-

lular potassium was not elevated (Chang et al., 2010).

Facilitation of Cell Death by SD in Metabolically

Compromised Tissue

Experimental evidence that neuronal damage is facilitated by

prolonged SD comes from MCAO models in which cumulative

duration rather than sheer number of SDs correlated with infarct

size (Dijkhuizen et al., 1999; Mies et al., 1993) and the dynamics

of infarct growth (Hartings et al., 2003). Evidence that SD initiates

neuronal death in metabolically compromised tissue stems from

experiments in which SD was artificially triggered outside of

a moderately hypoperfused zone and invaded it. Only when

hypoperfused tissue was traversed by SD, histological sections

demonstrated neuronal necrosis (Dreier et al., 2007).

The first SD erupts in the ischemic center �2–5 min after

MCAO. When tissue is reperfused in time, this initial
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 909
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Figure 3. Snapshots of SD Triggered by Embolic Occlusion of a Cerebral Artery on the Left and by High Potassium on the Right
(A) In the embolic stroke model, the first SD starts in the ischemic center�2–5 min after local circulatory arrest. In the experimental migraine aura model, the first
SD starts at the application site of high potassium. In bothmodels, the center region remains persistently depolarized thereafter. From the center, the SD runs into
the normal, surrounding tissue. The snapshot shows a time point at which the SD front has already reached normal, surrounding tissue.
(B) In the embolic stroke model, the zone of persistent depression of activity extends into the normally perfused cortex surrounding the ischemic zone (Oliveira-
Ferreira et al., 2010). In the high potassium model, persistent depression is observed at the potassium application site. In both models, spreading depression of
activity will only be short-lasting far away from the trigger.

(legend continued on next page)
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depolarization is fully reversible. SD sensu stricto hence only in-

cludes the initial depolarization until the commitment point (cf.

above). When the depolarized state outlasts this point, the DC

potential increasingly reflects cellular death. This late DC nega-

tivity is the negative ultraslow potential (Dreier et al., 2013a). After

the first SD that originates in the ischemic center and concentri-

cally invades the penumbra and surrounding tissue, subsequent

SDs are generated at the rim of the permanently depolarized

core (Dijkhuizen et al., 1999; Hossmann, 1994). Theymay spread

locally only, or alternatively cycle around the depolarized core

(Nakamura et al., 2010; Woitzik et al., 2013).

Even when SDs are not terminal, they can be followed by cell

death if superimposed on a shallow negative ultraslow potential.

For example, specific aconitase blockers, which selectively

inhibit astrocyte oxidative metabolism, did not induce terminal

depolarization but triggered a cluster of mildly prolonged SDs

on a shallow negative ultraslow potential (Largo et al., 1996b).

Similarly, recurrent, slightly prolonged SDs on a shallow negative

ultraslow potential led to neuronal death in ET-1-exposed cortex

(Oliveira-Ferreira et al., 2010). Notably, the negative ultraslow

potential is accompanied by tissue acidosis and incomplete

recovery of the other ion changes (Dreier et al., 2002; Largo

et al., 1996b; Oliveira-Ferreira et al., 2010; Windmüller et al.,

2005). If rCBF responses to SD are hyperemic, they may cause

atypical transient alkaline shifts instead of the usual acidosis,

indicating transient recovery from tissue lactic acidosis (Oli-

veira-Ferreira et al., 2010).

The pattern of mildly prolonged SDs on a shallow negative

ultraslow potential seems important, as clinical pilot studies

suggest that this pattern, rather than ‘‘classic’’ terminal depolar-

ization, is predominantly measured in patients who develop new

brain infarcts (Drenckhahn et al., 2012). Such clusters can recur

after a quiescent period of several hours. After MCAO in rats, this

led to further infarct growth (Hartings et al., 2003). Evidence for

secondary clusters was also found in patients with malignant

hemispheric stroke (Dohmen et al., 2008). It should be noted

though that the term ‘‘SD cluster’’ is not yet well-defined in

patients (Dreier et al., 2006). Current working definition for a

clustered SD is that it occurs within 2 hr from the previous one

(Sakowitz et al., 2013).

The Known Experimental Triggers of SD Are Either

Potentially or Unequivocally Injurious

To our knowledge, brief ischemia in mice by injection of air mi-

croemboli into the carotid circulation, has been the only properly

investigated experimental trigger so far, which was convincingly

found to induce SD before the intensity or time of exposure

reached the threshold for the induction of permanent neuronal

damage in thorough histopathological analysis (Nozari et al.,

2010). In other words, SD was triggered but no damage was

found in the trigger zone.

Potassium is another important trigger of SD. The potassium

threshold forSD in neocortical slices is between�12mM in young

and �16 mM in older animals (Maslarova et al., 2011). The
(C) Only in the embolic stroke model, an ischemic zone is observed.
If shortly after the situation illustrated by the snapshots the embolus is resolved o
Otherwise, neurons will die; in the potassium model however this process will tak
et al., 2013b).
threshold seems to be in a similar range in neocortex in vivo

(Petzold et al., 2005b), but due to glial buffering, the potassium

gradient between artificial cerebrospinal fluid (ACSF) and cortex

is steep when potassium is applied topically to the brain. Thus,

the ACSF potassium threshold was 56 mM in rats under barbitu-

rate-anesthesia (Dreier et al., 2000; Petzold et al., 2008).

Analogous to brief ischemia, potassium might trigger SD before

it induces permanent neuronal damage in the trigger zone. But,

this has not been properly investigated to our knowledge. A brief

cluster of SDs, triggered by potassium slightly above threshold,

resulted in minor signs of injury at the trigger site (scattered

shrunken non-scalloped neurons with pericellular edema and a

fewTUNEL-positivecells). This injury increased furtherdependent

on concentration, exposure time, and level of perfusion (Dreier

et al., 2000, 2013b). Prolonged placement of a cotton ball soaked

with 1 or 2 M potassium chloride on the pial surface is inevitably

associated with small necrosis (Muramatsu et al., 2004).

Electric stimulation is often claimed to be non-injurious. How-

ever, electric stimulation for SD induction is of several magni-

tudes more intense than any pathological brain activity. No

permanent neuronal damage may ensue in the trigger zone at

the electric threshold but this has not been properly investigated

to our knowledge. We previously found a small necrosis in rats

when three SDs were triggered with stimulus intensity somewhat

above threshold. Interestingly, consistent with a trauma-related

mechanism, electrically triggered SD (Sugaya et al., 1975) seems

to share the sensitivity to tetrodotoxin with trauma-triggered SD

(Akerman et al., 2008) in contrast to SD triggered by a potassium

chloride crystal (Sugaya et al., 1975) or high potassium dialysis

(Herreras and Somjen, 1993b).

Thus, among the known experimental triggers of SD most are

injurious, and no unequivocally non-injurious trigger has been

convincingly identified so far. Nonetheless, non-injurious trig-

gers might exist as propagation of SD can be seen as a process

that triggers SD in neighboring tissue and SD is not associated

with damage in naive tissue (Nedergaard and Hansen, 1988).

Moreover, migraine aura is almost always a harmless clinical

condition, which implies non-injurious triggers of SD.

Overlaps between Models of Migraine Aura, Stroke, and

Epileptic Hyperexcitability

In view of the potentially injurious nature of the experimental trig-

gers, an elegant illustration of the overlaps between models of

migraine aura and stroke comes from considering animal models

of SD in view of each of Leão’s hypotheses. If the model of SD is

investigated on the basis of Leão’s SD hypothesis of migraine

aura (Leão and Morison, 1945), not only the peripheral part of

the wave but also the central part, where the experimental trigger

is applied, is of interest. Vice versa, if themodel is investigated on

the basis of Leão’s SD hypothesis of stroke (Leão, 1947), not only

the central part but also the peripheral part in the adequately

supplied tissue should be considered, otherwise risking a

selective analysis bias (Figure 3). Overlaps between models of

migraine aura and stroke are also illustrated by comparing high
r the potassium disappears, cells will repolarize and no damage will develop.
e longer because the perfusion deficit accelerates cell death during SD (Dreier
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potassium and ET-1 model of SD (Dreier et al., 2002) or models

of cerebral microembolism with relevance for migraine with aura

in patients with cardiac/extracardiac right-to-left shunts (Nozari

et al., 2010). More complex overlaps were furthermore identified

in genetically engineered mice carrying FHM1Cav2.1 mutations,

which showed increased vulnerability to MCAO (Eikermann-

Haerter et al., 2012).

One hypothesis regarding SD in patients with migraine aura is

that SD in these patients emerges from episodic disruptions of

the excitation-inhibition balance and hyperactivity of cortical cir-

cuits due to excessive recurrent excitation (Tottene et al., 2009).

It would be important to study, in animal models of increased

propensity to SD, whether physiological models of functional

activation trigger SD based on the above mentioned hypothesis.

To take this hypothesis further, it would also be helpful if animal

models were identified in which isolated SDs spontaneously

developed in otherwise healthy cortex, analogous to animal

models of spontaneous IEEs. To some degree, hyperexcitability

underlying spontaneous SDs might in fact share mechanisms

with acute epileptic hyperexcitability, as (1) SDs are often

encountered in models of acute status epilepticus (Avoli et al.,

1991), (2) SDs and IEEs co-occur in patients with acute cerebral

injuries such as stroke or TBI (Dreier et al., 2012; Fabricius et al.,

2008), and (3) genetic predispositions to epilepsy and migraine

aura overlap (Winawer and Connors, 2013). For example,

mutation carriers for all three genes associated with FHM were

reported who also developed epileptic seizures (Costa et al.,

2014).

Interestingly, similarly to the kindling of chronic IEEs by artifi-

cially triggered IEEs, a recent clinical study on post-injury epi-

lepsy in patients with SAH suggested that repeated SDs could

kindle chronic IEEs (Dreier et al., 2012). By contrast, both

repeated IEEs and SDs seem to have inhibiting or ‘‘anti-kindling’’

effects on SD; supporting evidence includes the following: (1)

in various models, the susceptibility to SD decreased during

epileptogenesis (Köhling et al., 2003; Koroleva et al., 1993;

Maslarova et al., 2011; Tomkins et al., 2007), (2) SDs do not

invade penicillin-induced epileptic foci but typically circulate

around them (Koroleva and Bures, 1979), (3) single daily SDs

induced for 1 or 2 weeks in mice decreased the susceptibility

to SD (Sukhotinsky et al., 2011), and (4) even within the same

cluster of SDs, subsequent SDs typically propagate through a

smaller region than the first SD (James et al., 1999). In the light

of these observations, it appears that there are strikingly different

types of pathologic hyperexcitability states in the brain which

can be associated with either increased or decreased suscepti-

bility to SD.

Part II: Clinical Pictures in the Context of SD
Spreading Depression of Activity

Spreading depression of spontaneous activity is observed in the

ECoG as silence in frequencies above�0.5 Hz, running between

different electrodes (Dreier et al., 2006; Fabricius et al., 2006;

Leão, 1944) (cf. HF-ECoG in Figure 1A and 1B). SD seems to

initiate spreading depression because the sustained depolariza-

tion exceeds the inactivation threshold for the action potential

generating channels (Kager et al., 2002). The depression never-

theless outlasts the depolarization, suggesting that it is main-
912 Neuron 86, May 20, 2015 ª2015 Elsevier Inc.
tained by other mechanisms such as intracellular zinc, calcium,

and/or adenosine accumulation (Carter et al., 2013; Lindquist

and Shuttleworth, 2012). A new SD can start before the depres-

sion caused by the preceding SD has finished (Dohmen et al.,

2008; Dreier et al., 2006; Fabricius et al., 2006). The DC shift of

this new SD is often identical to that of the preceding SD. Such

a constellation however indicates shortage of energy unless it

results from a sedative. In a prospective, observational multi-

center trial of 103 patients with TBI, such SDs in isoelectric tissue

( = isoelectric SD) in contrast to SDs in electrically active tissue

were associated with a highly significant 8-fold increase in

the risk of unfavorable outcome at 6 months (Hartings et al.,

2011a). When this category was added as a covariate to a

regression model that included a prognostic score based on

variables at admission, it increased the proportion of variance

in clinical outcome from 9% to 22% that could be attributed to

predictors.

The duration of depression thus serves as another summary

measure for the tissue energy status in addition to the negative

DC shift duration (Dreier et al., 2006; Fabricius et al., 2006).

Notably, in experimental focal ischemia, the zone of persistent

depression between recurrent SDs, in contrast to the zone with

prolonged negative DC shifts, extends into the normally perfused

cortex surrounding the ischemic zone (Oliveira-Ferreira et al.,

2010). The negative DC shift duration is thus amore precise local

biomarker for the energy status than the depression duration, but

prolonged depression can be used as a biomarker to detect a

new ischemic event when recording electrodes are positioned

outside of the actual ischemic zone. This has relevance for clin-

ical monitoring in patients at risk for delayed cerebral ischemia

after SAH or secondary deterioration after TBI (Hartings et al.,

2011b; Oliveira-Ferreira et al., 2010).

Nonspreading Depression of Activity

Nonspreading depression of spontaneous activity was originally

described by Leão (1947) based on rabbit experiments of

global cerebral ischemia. In the electroencephalogram (EEG),

the first signs of nonspreading depression start within seconds

of circulatory arrest with an arousal reaction of fast, irregular

low-voltage activity. Isoelectricity is reached within 30–40 s,

well before the neuronal ATP pool is depleted. As opposed to

spreading depression, nonspreading depression does not run

between different brain regions but develops simultaneously

in the whole area exposed to oxygen depletion (cf. HF-ECoG in

Figures 1C and 1D).

The subtle initial EEG changes of nonspreading depression

are already associated with a profound neurological deficit, as

it only takes 7 s from circulatory arrest until normal individuals

lose consciousness. The perfusion threshold for complete, i.e.,

isoelectric, nonspreading depression ranges between 15 and

23 ml/100 g/min (Hossmann, 1994).

Without timely reperfusion, SD erupts in the ischemic center

not earlier than �1–4 min after onset of nonspreading depres-

sion, and SD rather than nonspreading depression initiates the

cascades that eventually lead to cell death (Dreier, 2011; Leão,

1947). SD may start either at multiple foci (Jarvis et al., 2001)

or at only one focus (Farkas et al., 2010). Evidently, SD cannot

initiate spreading depression in the isoelectric tissue as there is

no activity that could be depressed. This changes, in focal
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ischemia, when SD invades tissue further away, where non-

spreading depression is less complete. The further away from

the ischemic center, the more SD hence causes spreading

depression.

How hypoxic neurons and astrocytes sense diminishing oxy-

gen levels is unknown. But several local mechanisms were pro-

posed as mediating the depression, including (1) alterations in

vesicular transmitter release (Fleidervish et al., 2001), (2) activa-

tion of ATP-sensitive or G protein–dependent calcium-sensitive

potassium channels (Erdemli et al., 1998; Müller and Somjen,

2000a), (3) release of adenosine by astrocytes (Canals et al.,

2008), (4) acidosis, and (5) breakdown of gamma oscillations

(‘‘interneuron energy hypothesis’’) (Kann et al., 2014). Notably,

nonspreading depression is associated with neuronal hyperpo-

larization, in stark contrast to the depolarization block that

underlies spreading depression (Müller and Somjen, 2000a; Ta-

naka et al., 1997).

Nonspreading depression is presumably an ‘‘austerity pro-

gram’’ to curb neuronal energy usage by the shutdown of non-

essential cell functions well before prospects of tissue recovery

vanish (Hochachka et al., 1996). This strategy might be highly

effective, as about three quarters of brain energy are consumed

by neural computation. Importantly, all this implies that non-

spreading depression and SD are entirely different phenomena.

The Clinical Correlates of Sustained Depolarizations

History, examination, and clinical judgment remain the pillars of

diagnosis and treatment even in the era of modern technology,

although technology can obviously be used to support clinical

decision-making. Problems arise when observations obtained

with new technologies contradict well-established clinical con-

cepts. These concepts, then, need to be revised. Observation

of SDs with modern technologies in migraine aura and stroke

is among the most prominent examples of such dilemmas, as

patient percepts and clinical courses could hardly be more

different between the two diseases, and at first glance, it seems

impossible to relate them to a common pathophenomenological

basis. This forms a major obstacle to a complete concept of the

SD-diseases and will therefore be addressed in detail in the

following.

No matter which body system the neurologist examines,

without technological aids, only repercussions of changes in

brain activity on body functions can be evaluated, but the path-

ological processes which cause the changes in activity cannot

be directly observed. To put it figuratively, history and examina-

tion only inform the neurologist about the shadows that patho-

logical processes cast over body functions through their effects

on brain activity. The nature of these shadows builds the basis of

the neurologist’s clinical approach. The neurologist thus faces a

fundamental philosophical problem, analogous to Plato’s cave

allegory as further explained in Figure 4. In translating Plato’s

cave allegory to neurology, understanding the pathological

process underlying an epileptic seizure might be comparatively

simple because, rather than casting a shadow over brain activity

and body function, the pathological process, namely an IEE, is

associated with a characteristic excess in brain activity that

drives an excess in body function such as stiffness of limbs

followed by jerking movements during a tonic-clonic seizure.

The neurologist can see this with his own eyes. When technolog-
ical aids such as electrographic recordings then ‘‘liberate’’ him

from the ‘‘cave,’’ he might quickly grasp the connection between

excess in body function and the ‘‘real object,’’ the IEE. The

correspondence between abnormal brain function and change

in body function was in fact so obvious that, in 1870, based on

clinical observation and judgment alone and long before the

EEG was invented by Hans Berger in 1924, John Hughlings

Jackson came up with the hypothesis that an epileptic seizure

arises from an occasional, excessive, and disorderly discharge

of gray matter.

In contrast to an epileptic seizure, migraine aura represents a

condition corresponding to a shadow on the proverbial cave’s

wall (cf. HF-ECoG in Figures 1A and 4A). This shadow can be

directly seen by the patient and described to his neurologist.

Accordingly, the neuropsychologist Karl Lashley referred to

this shadow as a ‘‘scotoma’’ (= ‘‘darkness’’ in ancient Greek)

(Lashley, 1941). Often surrounded by a narrow scintillating

rim, this slowly growing, kidney-shaped shadow usually starts

in the visual field center, running to the periphery within �10–

15 min. Lashley hypothesized that the underlying process, the

‘‘real object,’’ corresponds to a wave of intense excitation in

the primary visual cortex, creeping forward at a velocity of

3 mm/min, followed by a longer period of inhibition. The scintil-

lating rim is presumably produced by synchronization of initial

firing among nearby neurons, termed epileptoid activity, which

locally lasts for �1–5 s and presents as a high-frequency burst

of population spikes (Herreras et al., 1994). Rather than inhibi-

tion, however, a depolarization block is responsible for the

decline in spontaneous activity. Aristides Leão was the first to

observe this when he electrically triggered spreading depression

of spontaneous activity in the rabbit cortex (Leão, 1944). In 1945,

he speculated that this is the pathophysiological correlate of the

migraine aura (Leão and Morison, 1945). In 1947, he discovered

the underlying process casting the shadow over the activity,

when he observed the large negative DC shift of SD and correctly

hypothesized that it reflects pronounced depolarization of

neurons (Canals et al., 2005; Leão, 1947).

In the field of migraine aura, ‘‘liberation’’ from the ‘‘cave’’ has

required a longer march than in epileptology, and electrographic

evidence of SD during migraine aura is still missing. However,

imaging studies of changes in rCBF or its surrogates during

migraine aura strongly supported Leão’s hypothesis (Hadjikhani

et al., 2001; Olesen et al., 1981). Consistent evidence was also

provided by magnetoencephalography (Bowyer et al., 2001).

Nevertheless, it was claimed for decades that Leão’s hypothesis

is invalid because SDs would not occur in the human brain,

based on unsuccessful attempts to trigger them in chronically

epileptic patients and a seeming lack of SD correlates in the

scalp EEG. Only in the last two decades, subdural ECoG record-

ings in patients and measurements in brain slices provided

unequivocal electrophysiological evidence that SDs do occur

in the human brain (Avoli et al., 1991; Dohmen et al., 2008; Dreier

et al., 2006, 2009; Fabricius et al., 2006; Hartings et al., 2011a,

2011b; Mayevsky et al., 1996; Strong et al., 2002). SD’s corre-

lates in the scalp EEG were identified with simultaneous record-

ings of subdural ECoG and continuous scalp EEG (cEEG)

(Drenckhahn et al., 2012; Hartings et al., 2014), and animal

studies revealed that the propensity to SD markedly declines in
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 913
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Figure 4. A Visual Migraine Aura and a
Sudden Hemianopia as Two Different
Shadows in Plato’s Allegory of the Cave
When a neurologist investigates the visual system,
only the repercussions of changes in brain activity
on the patient’s vision can be evaluated, while the
pathological processes causing these changes
cannot be directly observed. Thus, the neurologist
is only informed about ‘‘shadows’’ that patholog-
ical processes cast over the patient’s vision
through their effects on brain activity. In his alle-
gory of the cave, Plato had Socrates investigate a
fundamental philosophical problem that relates to
this neurological conundrum. In his fable, pris-
oners have lived enchained in a cave all of their
lives, facing a blank wall. Objects are passing in
front of a fire behind them, casting shadows on the
wall. Socrates depicts this scene to Glaucon, ex-
plaining that the shadows are as close as the
prisoners get to viewing reality. He describes the
prisoners’ reaction when they are freed and asks
whether the prisoners will not fancy at first that the
shadows that they formerly watched are truer than
the real objects they now see, concluding that the
philosopher is like a prisoner who is liberated and
slowly comes to understand that the shadows do
not make up reality, as he can perceive real ob-
jects rather than the mere shadows seen by the
prisoners. Notably, the level of difficulty in linking a
specific shadow to its corresponding real object
depends on the object’s form and position relative
to the fire.
(A) In the cartoon, the shadow on the cave’s wall is
a migraine aura in the right visual hemifield of a
patient. By contrast, the ‘‘real object’’ is an SD that
runs in the fully electrically active, contralateral,
primary visual cortex where it locally causes
spreading depression of neuronal activity.
(B) Obviously, the allegorical prisoner would be
unable to link a shadow to its actual object when
the object is masked by another object in be-
tween. This is the case in ischemic stroke, which
occurs in the left posterior cerebral artery territory
in this example. Within seconds of rCBF decline,
nonspreading depression of brain activity will
cause sudden, right-sided hemianopia. When SD
then erupts in the ischemic zone�1–4 min later, it
escapes attention of the patient, and thus the
neurologist, either because it is not associated at

all with spreading depression, or because the remaining activity is already so disturbed that further depression will not entail a patient percept. Thus, SD reveals
itself to the neurologist duringmigraine attacks, when it is relatively harmless, whereas ironically, when potentially deleterious such as in stroke, it runs through the
tissue unobserved under the ‘‘shadow’’ of nonspreading depression of activity.
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the course of epileptogenesis (Köhling et al., 2003; Koroleva

et al., 1993; Maslarova et al., 2011; Tomkins et al., 2007).

As mentioned, the fundamental electrographic evidence for

SDs has not been found in patients with migraine aura; it has

been found though in patients with stroke and TBI, and this

brings us to the third shadow on the proverbial cave’s wall.

Different from that of migraine aura, this shadow does not

grow slowly in one visual hemifield, but instead, the patient

perceives the disappearance of a whole hemifield at once, or

even the simultaneous disappearance of several modalities at

once, such as a loss of movement in the right arm together

with a loss of language. This type of sudden neurological deficit,

which affects different cortical representation fields simulta-

neously, characterizes the shadow typical of stroke and might

be produced by nonspreading depression of activity (cf. HF-

ECoG in Figures 1C, 1D, and 4B). When SD then erupts in the
914 Neuron 86, May 20, 2015 ª2015 Elsevier Inc.
ischemic zone �1–4 min later (Leão, 1947), it might escape the

patient’s and clinician’s attention either because it is not associ-

ated with spreading depression at all, or because the remaining

activity is already so disturbed that further depression does not

entail a neuropsychological correlate.

If so, one could say that SD presents itself to the clinician only

during migraine attacks when it is relatively harmless, but it runs

regularly across the tissue non-detected, under the shadow of

nonspreading depression of activity, when it is potentially delete-

rious as in stroke. This insidious nature has led to the popular

clinical misconception that SD is harmless in the human brain.

It might be added that the analysis of the relationship between

the ‘‘real objects,’’ i.e., the depression and depolarization

patterns in the ECoG, and the patients’ percepts, is just at its

infancy. So far, the most important preliminary findings are that

conscious and oriented patients with subdural recording strips
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do not usually describe any obvious percept when a single SD is

running on the monitor, although the majority of these single SDs

are associated with spreading depression. Clusters of recurrent

isoelectric SDswere associatedwith new transient or permanent

neurological deficits such as a state of mutism or a hemiparesis,

but the patients did not report symptoms typical of migraine aura

(Dreier et al., 2006). One patient, who had suffered aneurysmal

SAH and was initially awake, displayed a waxing and waning de-

layed ischemic neurological deficit synchronously to a waxing

andwaning of SD clusters on themonitor. Following the clusters,

the activity always recovered until a prolonged cluster was finally

associated with (1) a permanent deficit, (2) no recovery of activ-

ity, and (3) a new infarct on neuroimaging. Although further sys-

tematic neuropsychological studies are necessary to investigate

these issues, it should be stressed that the clinical evidence from

conscious patients with stroke or TBI, who did not undergo SD

monitoring, is already overwhelming that migraine aura is very

rare in these patients, whereas, when the patients are properly

monitored, it is not unusual to witness SDs.

Migraine Aura and Cerebrovascular Disease

Based on the vascular hypothesis of migraine by Harold Wolff,

numerous articles on migraine between 1960 and 1980 started

with openings along the lines of: ‘‘It is widely accepted that the

aura arises from intracranial vasospasm and headache from

extracranial vasodilatation’’ (Blau, 2004). However, it is well

established now that extracranial vasodilatation is neither neces-

sary nor sufficient for migraine headache (Charles and Baca,

2013; Pietrobon and Moskowitz, 2014). A different question is

whether the SD hypothesis of migraine aura implies that the

aura cannot arise from intracranial vasospasm. The answer is

that Leão’s hypothesis does not exclude Wolff’s hypothesis of

the aura, as, for example, intracranial vasoconstriction by ET-1

potently triggers SD in rodents in vivo (Dreier et al., 2002,

2007). Whether or not a patient will perceive migraine aura will

be determined by the following, rather than by the vascular/

non-vascular nature of the trigger: (1) will the SD not only run

through ischemic tissue, but also through a perceptual and

eloquent brain region, which is not ischemic and thus not subject

to nonspreading depression of activity before arrival of the wave;

and (2) is the patient not only conscious but self-aware enough

to be able to perceive and report the aura symptoms. That there

are also vascular triggers to migraine aura is suggested by the

following: Migraine aura can be ignited by cerebral angiography,

cardioembolic conditions, extracranial cervicocephalic artery

dissection (D’Anglejan-Chatillon et al., 1989; Nozari et al.,

2010) or acute aneurysmal SAH (Dreier et al., 2001b). In the

rCBF studies using intracarotid 133Xe, the large number of re-

corded migraine auras resulted from the procedure of catheter-

izing and injecting the carotid artery, which provoked visual aura

in more than 50% of migraineurs (Lassen and Friberg, 1991). In

rare cases, a status aurae migrainalis can be induced by severe

stenosis of the internal carotid artery (Olesen et al., 1993), which

seems to respond to carotid thromboendarterectomy (Klingebiel

et al., 2008). Further associations betweenmigraine aura and ce-

rebrovascular disease were found in several Mendelian variants

of small vessel disease such as cerebral autosomal dominant

arteriopathy with subcortical infarcts and leukoencephalopathy

(CADASIL), hereditary endotheliopathy with retinopathy, ne-
phropathy, and stroke (HERNS), and mutations in the COL4A1-

gene (Dichgans et al., 1998; Lanfranconi and Markus, 2010).

Moreover, transient global amnesia is interesting, as studies

found an association with migraine, and MRI typically shows a

transient, dot-like diffusion anomaly in hippocampal area CA1,

a very sensitive area to metabolic and oxidative stress (Bartsch

et al., 2010). Furthermore, all recent hospital- and population-

basedepidemiological studies demonstrated a slightly but signif-

icantly increased risk for ischemic stroke in people who have

migraine with aura, contrasting with migraine without aura (Kurth

et al., 2012). It might be added that true migrainous stroke,

as defined by the International Headache Society (Figure 1B), is

much too rare to explain this epidemiological association.

In neuroimaging studies, a fraction of migraineurs displayed

white matter anomalies, consistent with small vessel disease

(Kurth et al., 2012). These are unlikely due to SDs, as SDs are

restricted to gray matter. However, the underlying small vessel

disease may not only lead to damage to white matter tracts

but also to cortical microinfarcts, sufficient to trigger SD but

too small to be detected by 1.5 or 3 T MRI, as suggested by

an animal study using 9.4 T MRI (Nozari et al., 2010) and by a

recent clinical study on cortical microinfarcts using 7 T MRI

(van Veluw et al., 2013). Hypothetically, such cortical microin-

farcts could contribute to cortical atrophy in severe forms of

migraine aura-linked small vessel disease such as CADASIL.

Lastly and importantly, not all the very rare cases of migraine

aura with devastating clinical outcome are related to ischemia.

For example, FHM can show the life-threatening condition of

fever, coma, focal signs, and delayed hemispheric cortical

swelling. With rare exceptions, this delayed cortical edema is

not cytotoxic but vasogenic (Butteriss et al., 2003; Dreier et al.,

2005) andmay result from SD-induced BBB disruption via matrix

metalloproteinase-9 activation (Gursoy-Ozdemir et al., 2004).

This plethora of observations suggests that the SD hypothesis

can gather an enormous bandwidth of partially harmless,

partially deleterious clinical conditions under one roof. Rather

than fundamentally different phenomena, relatively subtle mech-

anistic differences within the SD continuum in time and space, in

concert with overlaps of other processes that change neuronal

activity, are sufficient to explain largely different clinical manifes-

tations. Another aspect of this framework is that pathways

leading to very similar clinical manifestations may originate

from either initial disruptions of the neural system followed by

vascular system disruption, or the other way around, with the

vascular system leading. In fact, it seems a hallmark of the whole

class of SD-related neurological disorders that vascular and

non-vascular mechanisms are often inextricably linked (Brennan

and Charles, 2010; Dreier, 2011).

SD and Headache

Migraine occurs in �18% of women and 6% of men, with the

cross-study rate of migraine with aura being 4.4% (Merikangas,

2013). The aura typically precedes the headache and could

hence be the trigger for it. SD, in fact, releases a plethora of

molecules into the extracellular space including proinflammatory

factors such as potassium, protons, arachidonic acid, serotonin,

and NO (Gold et al., 1998; Hansen and Zeuthen, 1981; Lauritzen

et al., 1990; Mutch and Hansen, 1984; Petzold et al., 2008).

Experimental evidence suggests that this is sufficient to activate
Neuron 86, May 20, 2015 ª2015 Elsevier Inc. 915
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and sensitize meningeal afferents, to discharge trigeminal axons

and to activate second-order neurons which could mediate the

headache (Pietrobon andMoskowitz, 2013). In a complementary

fashion, parenchymal inflammation and trigeminovascular

activation may result from SD-induced opening of pannexin-1

hemichannels and caspase-1 activation (Karatas et al., 2013).

Notably, migraine headache can be triggered by intravenous

nitroglycerin after conversion to NO (Schytz et al., 2010). In

rats, NO correspondingly induces delayed dural inflammation

(Reuter et al., 2001). SD, however, does not cause this dural

inflammation as NO does not trigger SD. Decreased rather

than increased NO enhanced the susceptibility to SD in vivo

and in vitro in rodents (Petzold et al., 2005a, 2008), and NO

consistently reduced the propagation velocity of SD in the

chicken retina (Ulmer et al., 1995). Accordingly, nitroglycerin

did not provoke migraine aura in patients (Afridi et al., 2004).

Of note, NO triggers migraine headache in migraineurs (with

and without aura), but does not trigger (1) SD in animals, (2)

migraine aura in patients, and (3) migraine headache in healthy

subjects. Collectively, these observations strongly suggest that

migraineurs carry a special propensity to trigeminovascular

pain which is independent of SD. This propensity might be the

prerequisite for triggers such as SD or NO to trigger migraine

headache. Consistently, SD per se is not an aversive stimulus

in awake animals (Charles and Baca, 2013; Koroleva and Bures,

1993; Pietrobon and Moskowitz, 2013).

Further evidence for the argument that SD cannot trigger

headache without propensity to trigeminovascular pain comes

from the symptom of visual migraine auras without headache.

In the Framingham cohort, visual migraine auras were thus

reported by 1.23% of subjects (Wijman et al., 1998). In 77% of

the affected subjects these auras started after the age of 50; in

58% they were never accompanied by headaches; and 42% of

subjects had no headache history. Migraine headache typically

decreases with advancing age. In patients in whom isolated

auras start after the age of 50, lack of migraine headache may

hence indicate trigeminovascular changes with aging. In

younger patients, the propensity to trigeminovascular pain

must be absent for other reasons.

With regards to headache in the context of stroke, ischemic

stroke patients report headache at stroke onset in only one-

quarter of cases (Tentschert et al., 2005). Among these with

headache at stroke onset, only one-quarter fulfilled the ICHD-

II criteria for migraine headache. This makes a simple cause-

effect relationship between SD and migraine headache further

unlikely as a migraine aura is produced by only one SD but

(consistent with animal recordings) human recordings in

ischemic stroke displayed dozens up to over 200 SDs in practi-

cally all subjects with electrodes over viable tissue (Dohmen

et al., 2008). SD may nevertheless trigger migraine headache

when the stroke coincides with the postulated propensity to

trigeminovascular pain. Consistently, in multivariate analysis,

headache at stroke onset was significantly associated with

a history of migraine headache (Tentschert et al., 2005).

In contrast, no significant association was found with stroke

severity or etiology.

SD may not be the only type of sustained depolarization

triggering migraine headache. In a recent prospective study on
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200 consecutive adults with generalized epilepsy, 63% of sub-

jects had a postictal headache following every seizure (Botha

et al., 2010). According to the ICHD-II criteria, this headache

was classified as a migraine headache in 47% and as prob-

able migraine headache in 13% of subjects. Further subgroup

analysis consistently revealed a highly significant relationship

between postictal migraine headache and interictal migraine.

Similarly to SD, IEEs may only trigger migraine headache if the

patient carries a propensity to trigeminovascular pain.

However, propensities to trigeminovascular pain and to

SD may not be entirely independent. Mice engineered to carry

the CKId-T44A allele (cf. above) showed not only a reduced

potassium threshold for SD but also a higher sensitivity to

develop trigeminovascular pain in response to nitroglycerin,

despite that nitroglycerin is not a trigger of SD (Brennan et al.,

2013).

It might be added that whether or not SD will trigger migraine

headache may also depend, for example, on cortical layers and

regions been invaded (Karatas et al., 2013; Richter and Lehmen-

kühler, 1993) and on levels of SD-released noxious substances

that discharge primary afferents.

Another question is whether SD without percept can trigger

migraine headache in patients without aura. Electrophysiological

proof of single SDs without percept in conscious and oriented

stroke patients is very interesting in this respect (cf. above).

However, the 133Xenon SPECT studies in more than 30 carefully

selected migraineurs without aura were not significant for

spreading oligemia (Olesen and Friberg, 1991; Olesen and

Meyer, 1991). Also, the firm association between ischemic

stroke and migraine with, but not without aura (Kurth et al.,

2012) rather supports the notion that migraine without aura is

dissociated from SD.

Conclusions
The enormous bandwidth of clinical conditions involving SD

makes it a phenomenon ofmajor importance for brain pathology.

The complex questions of when, whether and how SD should be

treated, must be regarded in the context of the specific trigger

driving it in a particular situation. Yet, the broad view of a

stroke-migraine continuum provides a useful framework that

can lead to new insights into relevant disease states. We there-

fore suggest that SDs are used as a common, clinically measur-

able denominator to define the class of neurological disorders in

which SDs occur, in analogy to IEEs, which are already in clinical

use since decades.

On this basis, non-invasive technologies tomeasure rCBF and

its surrogates and cEEG should be further advanced to broaden

the availability of information on SDs from non-surgical patient

populations (Drenckhahn et al., 2012; Hartings et al., 2014). A

caveat to consider though is that non-invasive technologies

alone are not yet sufficient to reliably diagnose SDs. ECoG

measurements with subdural strips currently remain the gold

standard for monitoring SDs in patients, with the pros and

cons of this approach as discussed in Box 3.

In close cooperation with basic and preclinical scientists,

invasive neuromonitoring in neurointensive care units may

be helpful in advancing the understanding of SD. This might

improve disease characterization and stratification, which would



Box 3.

Subdural strips are superior to depth electrodes for monitoring

cortical activity in the context of SD because they are less

invasive: depth electrodes cause cortical injury with upregula-

tion of active inflammatory cell types and extravasation of

plasma proteins into an area that is �30 times the area of

the physical insult (Liu et al., 2012). Moreover, subdural strips

allow monitoring of a larger cortex region. Neither subdural

strips nor depth electrodes require craniotomy but can be im-

planted through a burr hole, although it is recognized that the

burr hole has to be somewhat more extended for the subdural

strip (Dreier et al., 2009; Drenckhahn et al., 2012; Jeffcote

et al., 2014). The basic recording quality seems similar but,

in the cortical depth, electrodes are more likely exposed to

large and complex changes in pH and tissue partial pressure

of oxygen, which interfere with the potent catalyst platinum

and should cause large disturbances of the DC signal.
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allow more targeted treatments, following the concept of Preci-

sion (‘‘individualized’’) Medicine, recently enunciated by the US

National Academy of Science (National Research Council Com-

mittee on A Framework for Developing a New Taxonomy of

Disease, 2011). It should be investigated for example whether

a delayed, severe cluster of SDs in an individual necessitates

the rigorous search for a typical etiology of secondary neurolog-

ical deterioration such as (1) sepsis, (2) hypoglycemia due to an

overdosing of insulin (Dreier et al., 2009), (3) systemic hypoperfu-

sion (Hartings et al., 2009), or (4) delayed cerebral ischemia

(Dreier et al., 2006). Identification of the underlying etiology

would then be followed, if possible, by immediate treatment

that specifically targets the identified etiology (e.g., with [1] anti-

biotics, [2] glucose or [3 and 4] catecholamine administration,

respectively). Moreover, neuroprotective interventions targeting

SDs such as hypothermia or pharmacological approaches could

be selectively investigated in patients presenting delayed, se-

vere clusters of SDs.
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